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Table 5 it can be seen that the strongest 50 reflexions 
of the test structure contain 296 reliable SQR's with 
E~ > 10, their mean value being 14.9. This means that 
the 50 phases are correlated by a highly overdeter- 
mined system of relations so that a reliable starting set 
can easily be constructed. The SQR's cannot be used 
for extending the set of phases to say 200 or 300, be- 
cause the new phases are linked by a small number of 
rather weak SQR's to the starting set. 

Thus the properties of triplet-relations and SQR's 
are complementary. By using the two types of relations 
at the same time the advantages of both can be com- 
bined. 

Practical procedure for structure determinations 

We have adopted the following procedure in our com- 
puter programs: 

1. Calculating triplet relations and SQR's. 
2. Convergence mapping (Germain, Main & Woolf- 

son, 1970) applied to the n strongest reflexions only 
with the following modifications: 
a. The reliability of a phase is estimated by 

K K L 
triplets SQR's 

b. If all E~' and E4 values contributing to an Rn 
are below a limit value (approximately 30% of 
the maximum E4) this RH is set equal to zero. 

c. No prior choice of origin-defining reflexions is 
made. 

3. The output reflexions of the convergence mapping 
form the starting group of phases. Some of them 
are used for the definition of the origin and other 
are given symbolic phases. 

4. Extension of the group of symbolically phased re- 
flexions. 

5. Finding the most reliable solution on the basis of 
the appropriate criterion (Schenk, 1972c). 

The method was applied to a structure in P21/c, for 
which previously only after two failures a proper start- 
ing set could be found. By the new method this start- 
ing set was obtained automatically. In another struc- 
ture determination, for which our former phasing 
process failed several times, a new starting set, found 
by means of the above procedure, lead to the correct 
solution. 

The author is indebted to Dr C. H. Stam, Mr W. 
Krieger and Mr W. van der Giesen for helpful discus- 
sions, and to Professor Dr C. H. MacGillavry ar.d Dr 
B. O. Loopstra for critical reading of the manuscript. 
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The question of how the Debye-Waller temperature factors depend on the atomic masses is discussed in 
terms of lattice dynamics. 

1. Introduction 

Recently Huiszoon & Groenewegen (1972) investigated 
whether or not the Debye-Waller factors depend on the 
atomic masses. We quote their result: ' . . .  a theorem 
will be derived which states that Debye-Waller B values 
of individual atoms in a crystal lattice do not depend 
on the atomic masses when the temperature of the crys- 
tal is above its Debye temperature'. The equations 
derived by Huiszoon & Groenewegen are correct; we 

believe, however, that their equations should be inter- 
preted in another manner. 

Huiszoon & Groenewegen (1972) base their inter- 
pretation on their equations (15) and (18). We quote 
equation (18) for reference as 

z z ~k kBT h2t~tk 
(U,(,)Uk(,))= U, - N ~ (L-1)'k(~) + 12kn----Tm~ 

i1 
h 4 

L,k(~,)+..., 1"> OD/2. (1) 720k3 T3m2 N T 
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The symbols have the following meanings: 

U~k= component ik of the vibration tensor Ur of the 
atom r; i,k= 1,2,3. 

k8 =Boltzmann's constant. 
T = absolute temperature 
Oo = Debye temperature 
N =number  of cells in the crystal 
q =wave vector 
h = Planck's constant divided by 2~ 
mr =mass of atom r 
fi~k = Kronecker symbol. 

The elements of the dynamical matrix L(q), which 
occur in equation (1), are 

L,k(~r,) = ~ ~0~k(~;) exp {-- iq .  [X(~t)-X(~;)]}, (2) 
l - l"  

where the indices l, l '  denote the cells in the crystal and 
X(t,) is the vector to the atom (t) in the crystal. The im- 
portant point about equations (1) and (2) is that the 
components U~ k of the vibration tensor of the atom r 
are expressed in terms of the dynamical matrices of the 
crystal, L(q), and thus in terms of the interatomic force 
constants " '  ~0~k(rr,). In treating the question of the 
coupling of the thermal motions of the atoms we 
derived corresponding equations, cf. Scheringer 
(1972a), equations (10) and (15). 

For high temperatures, T--~ 0% all terms on the 
right-hand side of equation (1) vanish except for the 
first. Thus the first term is the most important one. 
Since the atomic mass rnr does not explicitly occur 
either in this term or in equation (2) Huiszoon & 
Groenewegen (1972) conclude that the components 
U~ k are largely independent of the atomic masses. Only 
with low temperatures do the higher terms in the series 
expansion in equation (1) become important and thus 
- according to Huiszoon & Groenewegen - establish 
a certain dependence of the components U~ k on the 
atomic masses. 

Our criticism of this interpretation refers to the fact 
that Huiszoon & Groenewegen (1972) do not take into 
account constraints among the force constants, which 
are necessary for limiting the motions of the atoms to 
the internal vibrations of the crystal. As a consequence 
of the constraints a mass dependence of the atomic 
vibration tensors U, arises. 

2. The constraints on the force constants 

In the lattice-dynamical treatment of the motions of 
the atoms in a crystal all quantities are usually referred 
to a Cartesian reference system. Therefore the vibra- 
tion coordinates u~(~) of the atoms initially refer to 
external and internal vibrations of the crystal. Hence 
it is necessary to introduce constraints which provide 
for the exclusion of the external motions of the crystal. 
The constraints, which are important for our problem 
of mass dependency, arise from the fact that the inter- 

atomic forces remain invariant when the crystal under- 
goes a rigid translation. The constraints are 

~ "'v'  0" ~0iktr,,)= , i , k=  1,2,3; (3) 
r '  l '  

cf Maradudin, Montroll & Weiss (1963), equation 
(2.1.12b). Thus, in the following we have to investigate 
the impact of the constraints (3) on the elements of the 
dynamical matrix (2). Here the phase factors 

exp { -  iq. [X(~)- X(~;)]}, (4) 

which occur in the elements of the dynamical matrix, 
play an important part. These factors, on the one hand, 
take into account the coordinations of the atoms in the 
crystal and, on the other, the magnitudes of the various 
wave vectors, [ql =q,  which occur in the crystal. For 
sufficiently small values of q the phase factors are near- 
ly unity. Then a consequence of the constraints (3) is 
that, for the optic modes, the centre of gravity of each 
cell in the crystal remains nearly at rest. As a conse- 
quence of this behaviour a mass dependence of the 
atomic mean-square amplitudes arises. For large values 
of q the phase factors (4) deviate from unity and the 
constraints (3), which only refer to force constants, do 
not represent rigorous conditions on the elements of 
the dynamical matrix (2). Hence, for the optic modes, 
the centre of gravity of the unit cell does not remain at 
rest. Thus the strength of the mass dependence is 
dependent on how the constraints (3) cooperate with 
the phase factors (4) in the elements of the dynamical 
matrix (2), and is essentially independent of the temper- 
ature. Since the mass dependence of the atomic mean- 
square amplitudes varies with the different values of q 
we consider the three cases 

(1) q iszero ,  
(2) q is small but non-zero, 
(3) q is large 

in succession. 

3. q is zero 

The phase factors (4) are unity, and hence the dynam- 
ical matrix contains force constants only. The con- 
straints (3) render the dynamical matrix L singular and 
give rise to 3 frequencies o9~=0, which represent the 
limiting values of the 3 acoustic branches. The re- 
maining 3 n - 3  frequencies, which belong to the optic 
branches, are non-zero. Therefore the constraints (3), 
applied to the secular equation of the crystal, yield 

m,u,(~)=0; i=  1,2,3; (5) 
r-=J. 

for the optic modes, coj > 0; cf. the calculation given 
by von Laue (!948), equations (21.21) to (21.29). The 
result (5) holds for each cell l of the crystal. Equation 
(5) means that, for the optic modes, the centre of 
gravity of the atoms in the unit cell remains at rest 

A C 2 9 A  - 6* 
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(for q=0) .  We may picture the situation as follows. 
There are no acoustic modes with an infinitely large 
wavelength but only 3 n - 3  optic modes. Thus three 
coordinates of vibration are redundant. For the 3 n - 3  
optic modes all cells of the crystal vibrate in the same 
manner. Since the crystal as a whole remains at rest, 
the centre of gravity of each cell also remains at rest. 
Thus we can use equation (5) in order to eliminate the 
three redundant coordinates of vibration. 

For this purpose we define a 3 n - 3  column matrix 
Uopt which represents the coordinates of the internal 
vibrations of the unit cell (coordinates of the optic 
modes). (The index l, referring to the cell in the crystal, 
can be dropped.) By using the conditions (5) we then 
determine a 3n x 3 n - 3  matrix Gopt which performs the 
transformation of the internal coordinates to the coord- 
inates u of the Cartesian reference system so that 

u = GoptUopt • (6) 

Since Gopt was gained with the aid of the conditions (5), 
the elements of Gopt contain the atomic masses. With 
equation (6) we obtain for the 3 n -  3 × 3 n -  3 dynamical 
matrix of the internal vibrations of the unit cell 

Lopt = GTptLGopt. (7) 

L o p  t is essentially independent of the atomic masses 
since it contains force constants only. With equations 
(6) and (7) we now obtain for the 3n × 3n mean-square 
amplitude matrix, referred to the Cartesian reference 
system, 

__ --1 T U -  kBTGoptLoptGop t , (8) 

in the high-temperature approximation. U is dependent 
on the atomic masses since Gop t depends on the masses 
and LG[ does not. 

The simplest example of the equations (5) to (8) is 
given by a crystal with two atoms in the unit cell. Here 
we already have three optic branches. Calculation 
shows that, for q=0 ,  the mean-square amplitudes are 
inversely proportional to the squares of the atomic 
masses, i.e. there is a strong mass dependence of the 
mean-square amplitudes, cf von Laue (1948), p. 219. 

Furthermore, the equations (5), (6), (7) and (8), 
modified for all temperatures, can be applied to the 
internal modes of molecules. For free molecules there 
are no wave vectors, i.e. we can assume q=0 .  But the 
force-constant matrix for the internal modes of a mol- 
ecule is only of order 3 n - 6  since, as well as the degrees 
of rigid translation, the degrees of rigid rotation must 
be subtracted. However, this does not touch the 
principle of our consideration. For a diatomic mol- 
ecule we have the result that the mean-square am- 
plitudes are inversely proportional to the squares of 
the atomic masses, cf Herzberg (1957), pp. 73-76, in 
agreement with the result for the diatomic lattice. 

For some molecules the force constants are well 
known from spectroscopic investigations and the 
atomic mean-square amplitudes have been calculated. 
We have studied the mass dependence for several of 

these molecules. In order to define a measure for the 
strength of the mass dependence we use the equation 

mff(trace (Ur)int)=m~(trace (U,)i"t), (9) 

from which we can calculate the power p. We consider 
p as such a measure. (The superscript 'int '  means that 
we regard internal modes only.) We use the trace in 
equation (9) in order to average over the three direc- 
tions of space, and the brackets ( ) to average over all 
atoms of the same type in the molecule. The results of 
our calculation are listed in Table 1. In each row the 
compound, the number n of the atoms in the mol- 
ecule, (trace (Ur) ~"~) and (trace (Us) in') together with 
the chemical symbols of the considered atoms r and s, 
the power p, and the authors who calculated the mean- 
square amplitudes are listed. 0<p_<2 is found. The 
largest value, p = 2, only occurs for diatomic molecules 
since here the condition (5) attains its highest efficiency. 
For the molecules in Table 1, the value o fp  is approx- 
imately unity, the smallest value is 0.91. This corre- 
sponds to the 'product rule' (p = 1) which we have used 
in a preceding paper (Scheringer, 1972b). Thus there 
is a distinct dependence of the mean-square amplitudes 
on the atomic masses. Probably p will become smaller 
with a growing number of atoms in the molecule be- 
cause the effect of the conditions (5) on the individual 
atom will then decrease. Unfortunately we have no 
experimental data for molecules larger than those of 
Table 1 at our disposal. It is possible that the value of 
p =  1.89 is not correct (too large) for the P40~0 mol- 
ecule. The mass ratio m(P)/m(O)=l.94 is relatively 
close to unity which may give rise to errors in the value 
of p, calculated with the aid of equation (9). For, 
errors in the experimentally determined force constants 
are carried over to the ratio (trace ( U s ) i n t ) /  

(trace (U,) tnt) which may have a strong effect on the 
calculated value o f p  if the ratio m,./ms comes close to 
unity. 

4. Smal l  values  o f  q 

With q >0  the singularity of the dynamical matrix L 
vanishes, and the question arises if, with the transition 
q = 0 -+ q > 0, the condition (5) loses its validity abrupt- 
ly or continuously. Formally, the transition to q > 0  
means that the phase factors (4) begin to deviate from 
unity. Therefore the constraints (3) no longer impact 
rigorously on the elements of the dynamical matrix (2) 
and L becomes ill-conditioned but no longer singular. 
When L has been mass-normalized it yields three 
eigenvalues co~(q) which are small and belong to the 
three acoustic branches. In order to picture the situa- 
tion we may say: with small values of q we have long 
acoustic waves in the crystal which move the cells 
almost like undisturbed units. Thus we can consider 
these motions of the cells, to a very good approxima- 
tion, as external modes of the cells. With the transition 
to q > 0  the amplitude of the acoustic modes is in- 
troduced abruptly and with it the motion of the centre 
of gravity of the cells in the crystal. The internal vibra- 
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tions (optic modes) of  the cells, however, remain nearly 
unaltered by this transition. Hence the condit ion (5) 
remains valid for the internal modes of  the cells to a 
very good approximation.  In contrast to the case q--0,  
we now have to take into account that there are three 
acoustic modes which behave to a very good approxi- 
mat ion like external modes of  the cells. 

Thus it is expedient to t ransform the vibration coord- 
inates u of  the Cartesian reference system so that  they 
are resolved into internal and external coordinates of  
the motions of a unit  cell. For  this purpose we intro- 
duce a 3n x 3 matr ix Gac and form the 3n x 3n com- 
pound  matr ix  G-(Gopt  I Gac). Gac refers to the ex- 
ternal motions of the cell (acoustic modes) and does 
not depend on the atomic masses. By analogy with 
equation (6) we obtain 

U = Guopt, ae. (10) 

In the column matr ix  Uopt, ac the coordinates are 
resolved into 3 n - 3  internal and 3 external vibration 
coordinates. By analogy with equation (7) we now 
obtain 

( ' . t  0 )  
0 [l-~e ~L°p t ' ac=GTLG"  (11) 

For  small values of q the off-diagonal blocks of  
Lopt. ae are zero, to a very good approximation.  Thus 
the constraints (3) have the effect that, to a very good 

approximation,  a reduced number  of  elements in the 
dynamical  matr ix is now sufficient to describe the vi- 
brat ional  problem, Lop t and Lae, and these refer to 
internal and external motions of  the cells respectively. 
Using equations (10) and (11) we finally obtain 

L-1 -1 T --1 a" (12) = GoptLoptGopt + GaeLae Gae • 

The second term in (12), referring to the long acoustic 
waves, does not depend on the atomic masses whereas 
the first term does (as in the case q=0) .  Hence, even 
in the h igh temperature approximation,  the mean- 
square ampli tude matr ix U = kBTL -t, which is referred 
to the Cartesian reference system, is dependent  on the 
atomic masses. Al though the temperature constitutes 
a slight mass dependence of the mean-square ampli tude 
matrix, cf. equation (1), it is obvious from our discus- 
sion that  the temperature does not play a prominent  
part  in our problem. 

5. Large values of q 
For large values of  q the previously made assumptions 
no longer hold. The phase factors (4) are complex and 
deviate considerably f rom unity. Thus, they diminish  
the effect of  the constraints (3) on the elements of  the 
dynamical  matrix.  The acoustic modes can no longer 
be interpreted as external motions of  the cells but  
rather represent internal motions of  the cells. Hence 

Table 1. Mass dependency of the average atomic mean-square amplitudes in terms of p for several molecules 
The values of (trace (Ur) ~nt) are in A, 2, multiplied by l0 s. 

Compound n (trace(Ur) Int) 
Cyclopropene 7 C 181 
Cyclopropene-da 7 C 245 
1,2,5-Oxadiazole 7 O 205 

N 250 
C 281 

1,2,5-Thiadiazole 7 S 94 
N 286 
C 310 

1,2,5-Selendiazole 7 Se 4 
N 402 
C 363 

Furan 9 O 200 
C 295 

Furan-& 9 O 229 
C 325 

Thiophene 9 S 97 
C 372 

Thiophene-d4 9 S 112 
C 347 

Cyclopropane 9 C 206 
Cyclopropane-d6 9 C 262 
P406 10 P 360 
Propane 11 C 336 
Propane-ds 11 C 404 
Cyclobutane 12 C 414 
Benzene 12 C 382 
P401o 14 P 270 
Naphthalene 18 C 665 
Naphthalene-ds 18 C 672 
Hexamethylenetetramine 22 N 390 

C 500 
Hexamethylenetetramine-d~z 22 N 420 

C 500 

(trace(U~) ~"t) p 
H 3906 1.24 
D 2609 1.32 
H 4053 1.08 
H 4053 1.06 
It 4053 1-07 
H 4389 1.11 
H 4389 1.03 
H 4389 1.06 
H 4457 1.63 
H 4457 0.91 
H 4457 1.01 
H 4111 1.09 
H 4111 1.06 
D 2814 1.21 
D 2814 1.20 
H 4333 1.10 
H 4333 0.99 
D 3038 1-19 
D 3038 1.21 
H 3560 1.15 
D 2426 1.24 
O 830 1.26 
H 6336 1.18 
D 5200 1.42 
H 4970 1.00 
H 4190 0.96 
O 940 1.89 
H 6560 0.92 
D 5343 1.16 
H 493 0.96 
H 493 0.92 
D 381 1.13 
D 381 1"13 

Reference 
Cyvin & Hagen (1970) 

Cyvin, Cyvin, Hagen 
& Markov (1969) 

Cyvin & Hagen (1970) 

Cyvin & Cyvin (1971) 
Cyvin & Vizi (1970) 

Johnson (1970) 

Cyvin & Cyvin (1971) 
Cyvin, Cyvin, Hagen, 
Cruickshank & Pawley (1972) 
Elvebredd & 
Cyvin (1972) 
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for these motions the centre of gravity of the atoms in 
the unit cell is not at rest and a matrix G which re- 
solves the vibration coordinates into internal and 
external ones, cannot be constructed. Therefore the 
mass dependency of the matrices L, L -~ and U 
vanishes. 

6. Discussion 

To sum up: it is the long-wave optic modes of a crystal 
which cause a strong mass dependence of the atomic 
mean-square amplitudes. The smaller the value of q the 
more pronounced the mass dependence will be. Ac- 
cording to equation (1) the vibration tensors U, are 
calculated from the inverse dynamical matr!c~s of all 
wave vectors q of the crystal. Since the long waves with 
small q are less frequent than the short waves with 
large q, the long waves do not govern the vibration 
tensors U, but still have an impact upon them. Thus 
the mass dependency, which is expressed by equation 
(9) for q=0 ,  is greatly weakened but not fully elimin- 
ated in the vibration tensors U,. This result is in full 
agreement with the observations made on actual 
structures. Generally, for a given structure, we find 
the smaller amplitudes for the heavy atoms and the 
larger amplitudes for the light atoms. Exceptions to 
this behaviour were observed; however, they remain 
the rare cases. A detailed statistics, gained from many 
structures, would certainly be interesting. 

Two predictions can be made from the treatment 
given in this paper: 

(I) Given a fixed mass ratio of two atoms in the unit 
cell then, the fewer the atoms in the unit cell the greater 
the tendency for the heavy (light) atom to have the 
smaller (larger) amplitude. Thus, one will primarily 
observe that a heavy (light) atom has a relatively large 
(small) amplitude when the unit cell is large. 

(2) Given a fixed number of atoms in the unit cell 
the bigger the difference between the masses the 
greater the tendency for the heavy (light) atom .to have 
the smaller (larger) amplitude. 

I am indebted to D. W. J. Cruickshank and to S. J. 
Cyvin for supplying the mean-square amplitude data 
of naphthalene and of hexamethylenetetramine respec- 
tively before they were published. I acknowledge the 
discussions about the properties of force constants 
which I had with W. E. Klee. 
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A Simplified Procedure for Orientation of Single Crystals of Any Structure 
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Single crystals with any type of crystal structure can be set up in any desired orientation by a simple 
and time-saving method of comparing the Laue pattern of the single crystal with a computed and plot- 
ted Laue pattern. For this orientation procedure a special goniometer polishing jig has been developed. 
As examples, both the determination of an unknown direction and the preparation of a specified crystal 
plane of a hexagonal structure are demonstrated. 

Introduction 

In the field of solid-state and surface physics many 
physical properties depend on the orientation of single 

crystals (see e.g. Butz, Erley & Wagner, 1971; Krahl- 
Urban & Wagner, 1972). As long as such investigations 
are restricted to the main directions (e.g. [100], [110], 
and [111]) of cubic crystals, it will be easy to recognize 


